
 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

 

High-Level Graphical User Interface to Streamline Mission 

Management of Dynamically Growing Data Transport Systems 

 

Richard W. Hoffman III 

GDP Space Systems 

 

ABSTRACT 

As data transport systems become exponentially larger and more complex, the need to 

simplify the level of user involvement in establishing the intercommunication pathways 

becomes increasingly vital to streamlined, effective mission management.  The 

proliferation of open-architecture, modular approaches to data transport and multiplexing 

systems shows the need for a unified, high-level control scheme that helps to flatten the 

users’ learning curve for increasingly sophisticated, expanding systems.  Implementing a 

control package with the functionality described in this paper will improve the user 

experience by eliminating the need for low level hardware management, minimizing 

system network footprint and unifying this functionality for a diverse hardware package. 

KEY WORDS 

GUI, Network Appliance, Object Oriented Programming 

 

1. MISSION MANAGEMENT OVERVIEW 

As missions become increasingly sophisticated, so too does the data transport framework 

required to sustain and manage them.  With an increasingly complex, dynamically growing 

acquisition and transport system, the task of maintaining control stands to become 

unwieldy.  The feat of managing these control packages has become one that requires a 

multi-discipline background, incorporating the tasks of IT network management, 

information assurance (IA), and communications engineering.  The oft-overlooked role of 

the management software is one that can either greatly aid in this sometimes herculean 

effort, or gravely hinder it. 

In addition to an increase in the number of mission critical data sources, many of those 

sources are increasingly capable of generating data streams at very high rates.  Monitoring 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

and management of system node level aggregate bit rates is also of concern where many of 

these potentially high bit rate sources must shared limited, though seemingly extensive 

bandwidth resources.   

In many mission scenarios there is a need for rapid, on-the-fly reconfiguration, whether it 

is to accommodate a repurposing of resources, or to facilitate the implementation of a 

workaround for a failed module.  When the magnitude of the sensor suites for these 

missions is as extensive as those in many current and forecast systems, there is no 

reasonable way to accommodate a large-scale reconfiguration of those resources without 

an adequate level of automation.  Automating these “mission switches” can itself prove to 

be a complicated process, but with attention and forethought paid to the management 

software, the urgency is placed on the implementation of a solution rather than the 

identification of the problem. 

With any sensitive mission, timing is critical whether it is pre-launch configuration of the 

mission, the monitoring of a live mission, or the playback of a previous event.  Provisioning 

for these time-critical hurdles enables the user of a high-level interface to manage these 

highly dynamic systems with very low response times. 

 

2. SYSTEM MANAGEMENT IMPLEMENTATION 

There are multitudes of methods an engineering team can opt to utilize when addressing 

the issue of managing these types of dynamically changing systems.  In an attempt to 

accurately and fairly inform the user, some of the most common forms of management 

configurations are described herein.  Each of these configurations assumes that all network 

appliances in question can communicate amongst themselves. 

Standalone, Network Independent 

These systems are best described as those in which one or more devices with a 

network presence are capable of transporting data from one to another.  Each of the 

networked appliances requires direct input from a user with a priori knowledge of 

the device’s mission application, its network footprint location, pre-apportioned 

bandwidth, and inter-device path, as well as data manipulation parameters.  

Systems utilizing this configuration are configured as determined by the network 

administrator and communications engineers.  There is no single control package 

for these units and each may utilize its own proprietary configuration scheme.  This 

is the most unwieldy configuration for systems that are intended to grow and 

change as mission variables are modified. 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

 

FIGURE 1: Standalone Network Configuration 

Encapsulated Standalone 

An encapsulated standalone system is one in which the individual network nodes 

are themselves unaware of any other compatible network presences.  These systems 

can be wrapped with a software package that addresses these systems from a single 

point of control while still allowing the systems to function independently, without 

any mission context for their operation.  Systems configured in this way typically 

make use of some network-level management interface such as SNMP to retrieve 

status and affect configuration changes.  These systems enjoy some of the benefit of 

network awareness without the ability to interact directly.  

 

FIGURE 2: Encapsulated Standalone Network Configuration 

Network Omniscient 

This configuration is capable of a higher degree of autonomy from the user than the 

previous two.  Each networked node can control itself and any path-able, compatible 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

remote nodes.  On top of this ability to control other units, each unit is itself aware 

of the status of the remote nodes, and can react almost instantly to situations 

ranging from loss of power on a remote unit to runtime altered hardware 

configuration with a variety of user specified behaviors, defined prior to mission 

launch.  These systems, while complex, enable a user to accomplish a large number 

of setup, monitoring, and termination tasks without a need for direct, time-sensitive, 

user input. 

 

FIGURE 3: Omniscient Network Configuration 

In either of the two standalone systems detailed above, the configuration of the network 

presence of each of the individual modules is itself a large task.  

The process of managing this many devices on a network requires the user to make the 

appropriate management connections to each of the network devices individually, and then 

coordinate network addressing based upon the mission parameters.  Additionally, this 

means of system configuration adds a degree of ambiguity into mission management in 

that there are no implicit channels through which endpoint status can be relayed from one 

network node to another.  The user is then forced into acting as the sole provider of real-

time mission reconfiguration.   

In contrast to the stand-alone system configurations, the omniscient configuration relies on 

each network node acting not only on its own ends of a set of connections, but also on the 

rest of the system nodes, passing configuration messages and notifications between them 

to facilitate complete inter-chassis system status awareness.  As implied by FIGURE 3 

above, any network node still network path-able can react to and report any dynamic event 

from any other node.  Though there are several ways to facilitate this system-wide, event 

driven philosophy, the emergence of data synchronization techniques like database 

clustering help to eliminate the need for a central server appliance to manage these events, 

such as would be required to implement similar functionality within an established 

framework like SNMP. 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

3. OBJECT ORIENTED PROGRAMMING APPROACH 

In order to leverage the immense power of the object oriented programming (OOP) 

philosophy, it’s critical that a system designer develop comprehensive, extensible, 

inheritable data structures to represent the critical elements of the system.  Critical system 

elements that often require special OOP consideration include the device chassis, the 

modules, module ports, the chassis links, and the data connections themselves. 

Attention must be paid to the process of data structure abstraction and interface definition 

in order to ensure that all elements can be properly hierarchically nested.  This 

consideration helps to establish the relationships between elements and makes more 

complex behaviors easier to define.  An example of one such abstraction scheme can be 

understood from the diagram and code fragment given in FIGURE 4 and FIGURE 5 

respectively. 

 

FIGURE 4: System Hardware Configuration Diagram 

 

 

FIGURE 5: Abstraction Pseudo-Code 

Relying heavily on the encapsulation principle of OOP, the system designer is now able to 

present an interface in which the user is no longer concerned with specifying device 

addresses or connection destination addresses because they are encapsulated within the 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

abstract system objects defined as shown above.  In FIGURE 6 below, an example of 

creating a connection between two ports, within separate cards, which are themselves in 

separate chassis linked via ethernet is shown.  There is no need for the user to specify 

destination addresses, ports, which data link to use, or optimal bandwidth and network 

QoS settings. 

 

FIGURE 6: Abstracted Data Connection Creation 

The extension of these data structure objects into visual elements for use in the GUI is fairly 

straightforward.   With the appropriate choice of OOP development language, constructs 

such as Java and C# Interfaces can be utilized to ensure that a basic set of behaviors is 

handled in every element of the GUI.  The benefit of this is realized when considering a 

changing, reconfigurable system.   Assuming that the hierarchical relationships are 

established by the designer, reconfiguration behavior can be expected to have been defined 

in the interfaces associated with the affected system elements, whether they are high level 

entities like device chassis, or lower level entities such as device ports. 

It is apparent that on a sixteen card, thirty-two port device, for example, the process of 

reacting to a module failure could involve a substantial amount of guess work, re-cabling, 

and user interface activity.  However, with a system wherein the behavior for a failed 

module is defined to automatically switch to another available port, downtime on the data 

stream could be milliseconds as the system automatically reconnects.   

In the above example, the entirety of the task for the user is to switch appropriate cabling, 

if necessary, to the newly activated port.  The user interface would be expected to notify the 

user of this action through a dialog box or prompting message.  An additional benefit is 

gained from the fact that the question of which devices and modules are affected by the 

failure can be displayed in a foolproof way such as in FIGURE 7. 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

 

FIGURE 7: System Event Notification 

An additional benefit of this methodology is one that comes directly from the principle of 

extensibility.  Systems built upon complex, relational data structures could be expected to 

be cumbersome to update for use with future extensions, such as new I/O modules.  By 

properly utilizing object inheritance and a defined software interface, the addition of a new 

module could be realized with nothing more than the implementation of the required 

extension and interface methods, as demonstrated in FIGURE 8. 

 

FIGURE 8: Inheritance/Extensibility Pseudo-Code 

 

4. GRAPHICAL USER INTERFACE 

Within the commercial sector, advanced graphical interfaces have become an essential 

piece of any product.  These interfaces feature intuitive command contexts to facilitate an 

ease-of-use that non-commercial interests have not previously enjoyed.  Utilizing these 

same design principles within the high stakes, dynamically changing environment in which 

the telemetry community operates offers an opportunity to simplify complex, unwieldy, 

oftentimes legacy processes and present relevant information at a single point of access for 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

at-a-glance use by the system operator.  This governing design principle mandates that all 

pertinent system information be readily accessible without requiring a user to navigate 

away to a view of a device without a context for its function within the wider system as 

shown in an example in FIGURE 9.   

 

FIGURE 9: System Level GUI 

The minimal primary display of a system with this type of interface should be a macro-view 

of the whole system, including every networked device, its modules (if it contains any) and 

all inter-device data paths.  Additionally, users must be able to access information from 

more focused levels of the system, such as how much of the available bandwidth of a single 

device is being used by its data connections, or what the device operating temperature 

currently is. 

In addition to the system-wide view offered by the minimal dataset detailed above, the user 

is also offered a window into the operation of devices communicating in an inter-device 

configuration, and in the case of a system where devices may contain several functional 

modules, into the operation of these intra-device configurations.  Having functional access 

to and control of every level of a system and its children devices from a single view allows 

the user to determine at which level to handle varied tasks, such as data path disruptions 

or device failure.   

Understanding that the overarching design principle is that more system data is 

represented in a visual manner, important system information is displayed in visually 

sophisticated, easily deciphered display elements such as the aggregate device bandwidth 

usage chart or system fan tachometer displayed in FIGURE 10 below. 



 

300 Welsh Road, Bldg. 3, Horsham, PA  19044-2294 • Phone: (215) 657-5270 • Fax: (215) 657-5273 • www.delta-info.com 

 
 

 

FIGURE 10: Visual System Status Elements 

The same methodology can be applied to configuration of network devices, their data 

channels, and their data stream connections.  In configurations where devices may contain 

one or more distinct data acquisition/transfer modules, the same display and configuration 

theory is applied, offering context sensitive controls determined by the function of those 

modules in the wider system configuration.   

 

5. CONCLUSION 

The proper implementation of a high level, graphical user interface can serve to greatly 

reduce the load on a user before, during and after a mission.  Removing the need for a user 

to maintain a comprehensive knowledge of network configuration, device configuration 

parameters, or even device mission usage improves total mission up-time, even during 

difficult to anticipate scenarios.   

A design following the above principles, while more sophisticated and difficult to 

implement within existing network frameworks, affords immense benefits to the user and 

enables a wider array of users to participate in the mission management task.    

 

6. ACKNOWLEDGEMENTS 

I’d like to acknowledge my wife, Amanda, who patiently listened as I sounded out all of the 

“tough stuff”. 

7. REFERENCES 

Johnson, Jeff, Designing With The Mind In Mind, First Edition, Morgan Kaufmann, 

Burlington, MA, June 3 2010 


